Practice GEFS Model Guidance Scripts

Eleventh International Training Workshop Climate Variability and Predictions (11ITWCVP)

Ankara, Turkey, April 2019

Endalkachew Bekele NOAA/CPC/International Desks

1. Raw Forecasts

- No bias correction/calibration
- The ensemble mean is the average of the 20 ensemble members
- Raw forecast anomalies are computed by removing model climatology from the ensemble mean forecast:

GEFS raw Forecast Anomaly = **GEFS** Ens. Mean – **GEFS** Model Climo

2. Post Processing

- The skill of NWP models decreases with forecast lead time.
 - Larger model errors for forecasts beyond week-2
- Among various post processing methods, we will take a look at two forecast error correction methods:
 - Bias correction
 - Ensemble regression calibration

3. Data

- For this tutorial, we have provided observation and Forecast data.
- Observation Data:
 - 20 years (1999-2018) CPC Blended rainfall for week-1/2 target periods
 - 20 years (1999-2018) CPC Gridded 2m
 Temperature for the week-1/2 target periods

3. Data (cont.)

- Reforecast and Forecast Data:
 - 20 years (1999-2018) GEFS Reforecast of rainfall for week-1/2 target periods
 - 20 years (1999-2018) GEFS Reforecast of 2m temperature for week-1/2 target periods
 - GEFS real-time (2019) forecasts with 20 ensemble members

4. Bias Correction Method (linear bias assumed)

Bias for a given period i in the past is defined as:

where f stands for forecast and o stands for observation.

- In this tutorial we compute two biases:
 - Average Bias (b30) over previous 30 days (prior to the week -1/2 forecast period) > 30 biases
 - Hindcast period (1999-2018) bias (b20) for the week-1/2 target periods > 20 biases

4. Bias Correction Method (cont.)

- We then compute the average of these two biases
 avbias = (b30 + b20) /2
- We use this average bias value to correct our raw ensemble mean raw forecast

bias corrected forecast = raw forecast - avbias

Where raw forecast is the original model rainfall or 2m temperature forecast, valid: 26 Feb - 4 Mar, 2019 (week 1) and 5 – 11 March, 2019 (week 2).

5. Regression Calibration Method

Linear Regression

$$y = mx + b$$

- Where y is forecast anomaly, and x is observation anomaly
- We have the reforecast and observation data for the hindcast period (1999 – 2018)
- Use observation and reforecast dataset to calculate the regression coefficients (m and b)
- Use the regression coefficients to calibrate your raw forecast

- Prepare your observation and model climatology:
 - Using the rainfall and temperature observation data, compute rainfall and 2m temperature observation climatology for the target periods, 26 Feb 4 Mar, 2019 (week 1) and 5 11 March, 2019 (week 2).
 - You will have two types of climatological values for rainfall:
 - Regular climatology (the sum of observations divided by the number of years)
 - Transformed climatology (the fourth root of your regular climatology). The transformation is required to ensure normal distribution in the rainfall data
 - No need of transformation for temperature data
 - Using the rainfall and temperature Reforecast data, compute rainfall and 2m temperature model climatology for the target period, 26 Feb 4 Mar, 2019 (week 1) and 5 11 March, 2019 (week 2).
 - As in the observed climatology, you should have two climatological values (regular and transformed) rainfall model climatology, and one 2m temperature model climatology

- Prepare your hindcast observation Anomaly:
 - For each year in the hindcast period (1999-2018), transform your rainfall observation using the fourth root approach to ensure normality in your data

TarnsformedRainfallObservationⁱ = $sqrt(sqrt(RegularRainfallObservation^i)$ Where i varies from year 1 to 20 (1999 – 2018)

 Using your transformed rainfall observation and transformed rainfall climatology, compute transferred rainfall anomaly for each year in the hindcast period:

RainfallTarnsformedAnomalyⁱ = RainfallTarnsformedObservationⁱ - RainfallRarnsformedClimatology

 Using your regular 2m temperature observation and climatology, compute observation anomaly for each year in the hindcast period:

TempratureAnomalyⁱ = TempratureObservationⁱ - TemperatureClimatology

- Prepare your hindcast Reforecast anomaly:
 - For each year in the hindcast period (1999-2018), transform your rainfall forecast using the fourth root approach to ensure normality in your data

TarnsformedRainfallCFSⁱ = sqrt(sqrt(RegularRainfallCFSⁱ)

Where i varies from year 1 to 20 (1999 – 2018)

Using your transformed rainfall forecast and transformed CFS climatology,
 compute transferred Forecast anomaly for each year in the hindcast period:

GEFSRainfallTarnsformedAnomalyⁱ = GEFSRainfallTarnsformedForecast - GEFSRainfallTrarnsformedClimatology

 Using your regular 2m temperature Forecasts and model climatology, compute forecast anomaly for each year in the hindcast period:

GEFSTempratureAnomalyⁱ = **GEFSTempratureForecast**ⁱ - **GEFSTemperatureClimatology**

- Compute the statistics required for regression calibration:
 - Using your transformed rainfall observation anomalies and transformed rainfall forecast anomalies, compute time correlation over the hindcast period (1999 – 2018)
 - Using your transformed rainfall observation anomalies, compute standard deviation of the observed rainfall anomalies
 - Using your 2m temperature observation anomalies and 2m temperature forecast anomalies, compute time correlation over the hindcast period (1999 – 2018)
 - Using your temperature observation anomalies, compute standard deviation of the observed temperature anomalies
 - Using your transformed rainfall forecast anomalies, compute standard deviation of the forecast rainfall anomalies
 - Using your temperature forecast anomalies, compute standard deviation of the forecast temperature anomalies

- Compute statistics required for regression calibration:
 - Using your computed correlation, observation standard deviation and forecast standard deviation, compute regression coefficients for temperature and rainfall, separately:

RegCoef = Correlation * (Observation StdDevn/Forecast StdDevn)

- Prepare your Real-Time 2m Temperature and rainfall forecasts:
 - Using the GEFS 20 ensemble member forecasts in your real-time forecast, compute ensemble mean 2m
 Temperature and Rainfall forecasts, valid 26 Feb 4
 Mar, 2019 (week 1) and 5 11 March, 2019 (week 2)...
 - Compute Uncorrected Temperature and Rainfall Forecast Anomaly

UncorrectedTemperatureAnomaly = UncorrectedTemperatureFcst - GEFSTemperatureClimatology

UncorrectedRainfallAnomaly = UncorrectedRainfallFcst - GEFSRainfalllimatology

- Compute your Corrected Forecasts:
 - Using uncorrected forecasts, regression Coefficient and standard deviation of observation, compute corrected forecasts:
 - For rainfall:

RainfallCorrectedForecast = (RainfallRegCoef * TransformedRainfallUncorrectedAnomaly) / RainObservationStdDevn

– For Temperature:

TemperaturelCorrectedForecast = (TemperaturelRegCoef * TemperatureUncorrectedAnomaly) / TempObservationStdDevn

- For Raw (uncorrected) forecasts, compute the probability of above-average by counting the proportion of ensemble forecasts that exceed climatological values.
- Similarly, for Bias corrected forecasts, count the proportion of ensemble members that exceed climatological values to get probability of above-average
- For Regression Calibration forecasts, using the corrected forecasts and associated statistics, and using the cumulative distribution function, obtain the above-average exceedance probability
- In two category forecasts, probability of below-average is 1

 probability of above-average

6. Ensemble Regression Calibration Process - Rainfall

7. Ensemble Regression Calibration Process – 2m Temperature

8. Post Processing Using GrADS

- GrADS post processing scripts are provided along with observation and forecast data.
 - From your home directory, uncompress the compressed file, by typing:

tar -xvf subseason_with_grads.tar.gz

Change your directory by typing:

cd subseason_with_grads

Move to another sub-directory by typing:

cd week1and2diagnostics/

- This directory contains all the required data and scripts for this exercise
- Move to another subfolder by typing:

cd scripts/

- Type **Is** to see the content of this subfolder
- You should see 5 GrADS scripts (with gs extension)

8. Post Processing Using GrADS (cont.)

- Take a look at files in the this sub-folder. Most of the file names are self-explanatory.
- Using any text editor (npp or gedit), you may open the GrADS script files

For example you may type:

- npp calibrated_bias_corrected_and_raw_gefs_precip_week1.gs &
 gedit calibrated_bias_corrected_and_raw_gefs_precip_week1.gs
- Take a look at the contents. Description was provided for most in these scripts, and are easy to understand.

9. Plot Week-1 Circulation Anomalies Using GrADS

- Before running the GrADS scripts, you need to set domain for your area of interest:
- For week-1 circulation anomalies, open GrADS script using your text editor (gedit or npp)

```
npp gefs_week1_circulation_anomalies.gs
gedit gefs_week1_circulation_anomalies.gs
```

- On the top of the file, you need to change latitude and longitude values to reflect your area of interest (the default area is Africa)
- After setting your domain, save and exit
- From your Cygwin/linux terminal run the script using the command below:

```
grads -pc gefs_week1_circulation_anomalies.gs opengrads -pc gefs_week1_circulation_anomalies.gs
```

- This should generate 850-hPa and 200-hPa wind and divergence anomalies for the week-1 target period (Feb 26 Mar 4, 2019).
- Type quit to exit from GrADS

10. Plot Week-1 raw, bias corrected and calibrated rainfall forecasts Using GrADS

Set your domain:

```
npp calibrated_bias_corrected_and_raw_gefs_precip_week1.gs gedit calibrated_bias_corrected_and_raw_gefs_precip_week1.gs
```

- On the top of the file, you need to change latitude and longitude values to reflect your area of interest (the default area is Africa)
- After setting your domain, save and exit
- From your Cygwin/linux terminal run the script using the command below:

```
grads -pc calibrated_bias_corrected_and_raw_gefs_precip_week1.gs opengrads calibrated_bias_corrected_and_raw_gefs_precip_week1.gs
```

 This should generate raw, bias corrected and calibrated rainfall forecasts for the week-1 target period (Feb 26 – Mar 4, 2019).

11.Plot Week-1 Exceedance Probability Plots Using GrADS

Set your domain:

```
npp gefs_week1_precip_exceedance_prob.gs
gedit gefs_week1_precip_exceedance_prob.gs
```

- On the top of the file, you need to change latitude and longitude values to reflect your area of interest (the default area is Africa)
- After setting your domain, save and exit
- From your Cygwin/linux terminal run the script using the command below:

```
grads -pc gefs_week1_precip_exceedance_prob.gs
Opengrads -pc gefs_week1_precip_exceedance_prob.gs
```

• This should generate exceedance probability plots for 25, 50, 75 and 100 mm per week plots for the week-1 target period (Feb 26 – Mar 4, 2019).

Exercise

- Run circulation and rainfall anomaly as well as exceedance probability scripts for week 2
- Remember to set your domain
- Use the images generated from week-2 scripts, together with the MJO information discussed in the morning, create a week-2 diagnostic ppt for your area of interest.